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F E A T U R E S  O F  N U C L E A T I O N  K I N E T I C S  I N  V A P O R -  
G A S  M I X T U R E S  A T  I N C R E A S E D  P R E S S U R E S  O F  G A S  

S. P, Fisenko UDC 536.423.4 

The kinetics of nucleation in a vapor-gas mixture at increased pressures of the gas-ballast (at Knudsen 
numbers determined from the radius of a critical nucleus below unity) is theoretically investigated. 
Interpolation expressions for the nucleation rate at arbitrary Knudsen numbers are obtained. 

Introduction. One of the basic assumptions of a classical nucleation theory in gases [1, 2 ] is the assumption 
that a metastable supersaturated vapor and a gas-ballast are spatially uniform. In this case the kinetics of nucleation 
can be described solely as a process of Brownian walk in the nucleus-size space [3 ]. 

From the viewpoint of the kinetic theory of gases [4 ] a vapor-gas system with a new phase nucleus may be 

considered locally spatially uniform in the case when the Knudsen number Kno = A/R0 >> 1. 

Since R0 - 10 -9 m, the validity of the condition Kno >> 1 is usually obeyed over a fairly wide range of pressures 
of the gas. However for a number of substances, mainly with a large molecular weight, the condition Kn0 >> 1 is 

violated even at moderate pressures. So, for example, for dioctylphthalate the condition Kno < 1 is attained at a 

pressure of the gas-ballast (helium) equal to 2.106 Pa [5 ]. Reaching the condition Kno < 1 for other substances 

including water requires considerably higher pressures of the gas-ballast (usually helium) than has currently been 

attained on experimental stands for investigating the kinetics of nucleation [6 ]. 
At Knudsen numbers smaller than unity the local spatial uniformity in the vicinity of the new phase nucleus 

is violated and the necessity emerges to consistently describe the evolution of the function of distribution for the new 

phase nuclei fig, t) in size g (number of molecules) and macroscopic vapor density n(x, t) close to the nucleus. 
Mathematical Model of Nucleation Kinetics with Kn 0 < I. The work [7 ] derives by the methods of 

nonequilibrium statistical thermodynamics [8 ] a system of equations describing the kinetics of nucleation with Kn0 
< 1. In Markov's approximation this system of equations has the form 

c?~ (g, =: 3----g-Oil( L" ~Cg (ln f f f  AffJ (g) ~) q (1) 

q- ~I v---~t~tt d,, (x)dLr) l . . . .  ~3~,, l, 

In the kinetic equation (I), A~(g) is the free energy of formation of the new phase nucleus consisting of g molecules 

[1, 21, I is the nucleation rate; fl = 1/kT, where k is the Boltzmann constant, T is the temperature. In [71 a 
representation in the Green-Kubo form is obtained for all kinetic coefficients [8, 9 ], which has enabled us to find an 

exact relation between the kinetic coefficients from (1) 

Lll = J' d~x div Jll (x), (3) 

where f d3x is integration over the spatial variables outside the nucleus. In its turn the kinetic coefficient Lll with 

Kn0 << 1 is expressed using the diffusion factor D of the vapor in the mixture as [71 
, , n , , ,  

Academic Scientific Complex "A. V. Luikov Institute of Heat and Mass Transfer of the Academy of Sciences 
of Belarus," Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 64, No. 5, pp. 57"/-582, May, 1993. 
Original article submitted April 29, 1992. 

470 1062-0125/93/6405-0470512.50 �9 1994 Plenum Publishing Corporation 



Lll =: 4uRoDn0, (4) 

where n o is the equilibrium vapor density in the system. The vector J11 is equal up to a constant to the integral with 

respect to time of the correlation function between the flows of vapor molecules through the nucleus surface and in 

the vicinity of the point with the coordinate x. 

In the approximation of spherical symmetry of the vapor state close to the nucleus, assuming that the origin 

of coordinates coincides with the nucleus center, J11 is to depend only on the distance r. Then by using the method 

proposed in [9 ] we can obtain an approximate solution for J l l ,  nevertheless satisfying the relation (3), which plays 

the role of the law of sums [8 ]. As is shown in [7 ], in view of (4) it has the form 

Dn~ e x p ( ( r - - R 0 ) )  r (5) 
J l l  (r) - 3Ro ~ Irl 

From (5) it follows that at distances of the order 2 the correlation function tends to zero in accordance with 

the usual physical notions of the kinetic theory of gases. Thus, in Eqs. (1) and (2) the terms in which J11 enters take 

account of the contribution of the Knudsen layer close to the nucleus. It is pertinent to note that an accurate calculation 

of J11 is currently an unsolved problem of statistical physics. 

A complete mathematical investigation of the nonlinear system of Eqs. (1) and (2) seems a considerable 

challenge. Since we are interested in the influence of Knudsen layers on the stationary kinetics of nucleation we will 

further restrict ourselves only to stationary solutions of this system of equations. 

We will point out that with Kn0 << 1 we may disregard the terms containing J11 in Eqs. (1) and (2). In this 

case, as follows from (1), the kinetics of nucleation can again be described solely as a process of Brownian walk in 

the nucleus-size space. Only the value of the diffusion factor in the nucleus-size space varies in comparison with a 

free molecular regime. With Kn0 << 1 it, as has already been mentioned, is determined by formula (4). The solution 

(1) with Kn 0 << 1 reduces just to varying the diffusion factor in the known Zeldovich solution [2 ]. 

Abandoning the condition Kn0 << 1, as follows from (1), requires taking account of the influence of Knudsen 

layers. For this we will find an approximate analytical solution of Eqs. (1) and (2). In doing so the vapor density 

field n(r) can be found from (2) without regard for the Knudsen layer, i.e., assuming in (2) J l l  = 0. When solving 

the kinetic equation we will take account of corrections to the diffusion approximation in a first approximation with 

respect to the Knudsen number by using the density field n(r) found earlier. 

The spherically symmetric stationary solution (2), satisfying the boundary conditions 

n ( r ) l ,=R = nl, (6) 

n (r)lr=.. = no, ( 7 )  

where n] is the density of the saturated vapor above the nucleus of radius R, has the form 

n (r) --- ( n l - -  no) R + no. (8) 
r 

Using (5) and (8) we may calculate the integral f V n J H / n d x  enteging in (1). In view of the dependence of Jll  on r 

it is equal to 

V.__~n J1] (r) d:'.z . . . . .  4aDn,,7~ (tq .... no) _ _1.0 (Kn0). (9) 
n 3 n~ 

It is common knowledge that the chemical potential of vapor/~ accurate to an addition, insignificant for our 
purposes, is equal to [10 ]: 

/x = [3 - I  In n (r). (10) 

Now by using (10) the quantity (nl - no)/n] can be represented as (nl - no)/nl ~-- fl(,ul -I~o) = fl ( O A ~ / O g  ) ,  where 

/~ 1 and/~o are the chemical potentials on a per-molecule basis in the nucleus and in the uniform vapor. As a result we 
have 
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n JllclSx = " 3 a g  + O(Kn0). (11) 

We call attention to the fact that the integral (11) changes sign depending on the nucleus size (number of molecules) 

in comparison with critical, for which it becomes zero. The contribution of the Knudsen layer, as it follows from (11) 

and (1), reduces to varying the height of the thermodynamic barrier, above which Brownian diffusion proceeds in 

the nucleus-size space. The geometric sizes of the new phase clusters, substantial for the kinetics of nucleation, as 

can easily be shown, coincide to a very high accuracy with the geometric size of the critical nucleus. This circumstance 

is also used in calculating the integral in (9). 

The kinetic equation (1) in view of (11) can be written now as 

f + ...... Kn,,/3)) = 

aoe 
(12) 

The boundary condition to the kinetic equation (12) at small g is chosen from the condition that the flow in the 

nucleus-size space I is equal to zero, i.e., 

f (g)lg-o --  C exp (--  V), (13) 

where C is the normalizing constant to the distribution function. At large g we have the condition, common in 

nucleation theory, 

f ( g ) lg~  == 0. (14) 

It should be pointed out that the boundary condition (13) is a natural generalization of the boundary 

condition taken in classical nucleation theory [1, 2, 11 ]. 
By substituting the variable f(g) = C exp(-V)y Eq. (12) with the boundary conditions (13) and (14) can be 

integrated. 
The variable y first, introduced in [2 ], is a "slow" variable in nucleation theory. Its typical plot is given in 

Fig. 1. The expression for the nucleation rate has the form 

3 6ag ~ (1 - -  Kn0/3) ' 

or in the approximation, linear with respect to Kn, to the nucleation rate in a purely diffusion regime I D 

where 

] " / ] )  ] { . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ 1 ( 1 5 )  

/ -  

ID = 1 /  . 6rcg* (16) 

When deriving (15) it was expected that the normalizing constant C from (13) practically coincides with the 

normalizing constant for the distribution function from (16). 
As follows from (15), taking account of the Knudsen layer close to the new phase nuclei increases the 

nucleation rate I, the value of I being substantially affected by the variation in the height of the effective 

thermodynamic barrier in Eq. (12). 
Nucleation Rate at Arbitrary Knudsen Numbers. It is well known that with Knudsen numbers Kn0 >> 1 the 

rate of isothermal nucleation If is prescribed by the expression [ 1, 2 ] 
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Fig. 1. Typical dependence of the "slow" variable y = f (g) /C exp(-V) on the 
number of molecules g in the new phase nuclei in the case of stationary kinetics 
of nucleation. 

Fig. 2. Results of calculating the ratio of the nucleation rate I(Kn) to the 
nucleation rate in the free molecular regime If depending on the Knudsen 
number: 1) calculation with (22), Y--1.5; 2) calculation with (15), ,A~(g )fl-- 
50, 7 = 1.5. 
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(17) 

We point out that If does not depend on the pressure of the gas-ballast. For intermediate numbers Kn 0 - 1 the structure 

of the kinetic equation for the distribution function of the new phase nuclei and an explicit form of the kinetic 

coefficients are currently unknown [12 ]; because of this, making use of expressions (15) and (17), we will find an 

interpolation expression for the nucleation rate I(Kn) with fixed supersaturation. For this we will apply Pade 's  

approximant method [13 ]. We previously took into account that the diffusion factor D can be represented as [4 ] 

D : = --~- [ /  ~n-----~ ~', 

where y is an adjusting coefficient of the order of unity. Then, comparing (17) and (16), we have 

ID = 11 Kn y. (18) 

We will represent the interpolation dependence of the nucleation rate I(Kn) on the Knudsen number in the 

form [I/I  ] of Pade 's  approximant: 

1 (Kn) = a0 -]- al Kn (19) 
1 + bl Kn 

For determining the three unknown coefficients we will impose natural conditions, which make it possible to 

determine them: 

I (Kn) = It ;  K n - +  oo, (20) 

and using (18) we obtain with Kn-> 0 
I (Kn) - IIV Kn. (21) 

From (20) we obtain a l / b l  -- If, and from (21) accurate to the first-order terms with respect to Kn, ao -- 0, al --- If},. 

Now the interpolation formula (19) can be written as 
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I (Kn) ? I(n 
.... (22) 

I i I ! 7 l()l 

Figure 2 gives the dependence of I(Kn)/If on the Knudsen number with 7 = 1.5, calculated using (22) [5 ]. 

Curve 2 is obtained with A@(g*)fl = 50 [5 ]. Expression (22), unlike (15), does not depend on the value of A@(g*)fl. 

The proximity of curves 1 and 2 at small g indicates sufficiently high reliability of expression (22). We note that 

Pade's approximant method enables us to obtain other interpolation expressions for the nucleation rate, including 

those which take account of the derived relation (15). 

C O N C L U S I O N S  

1. Within the framework of a mathematical model of nucleation kinetics, taking account of a local spatially 

nonuniform state of a vapor-gas mixture close to the new phase nucleus the influence of Knudsen layers is investigated 

at increased pressures of the gas. Within the framework of perturbation theory first-order corrections with respect to 

the Knudsen number are found to the expression for the stationary nucleation rate (15). 
2. The interpolation formula for the nucleation rate at arbitrary Knudsen numbers is obtained by Pade's 

approximant method (22). It is shown that the nucleation rate depends on the gas pressure if Kn _< 10 (Kn - p-l) 

and decreases as the pressure of the gas-ballast increases. 

N O T A T I O N  

2, mean free path of vapor molecules; R0, critical nucleus radius; f(g, t), function of distribution of new phase 

nuclei in size (number of molecules); n(x, t), vapor density; If, nucleation rate in a free molecular regime; g ,  number 

of molecules in the critical nucleus; I (Kn), nucleation rate with an arbitrary Knudsen number. 
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